
On Pixel-Based Texture Synthesis by Non-parametric
Sampling

Seunghyup Shin Sung Yong Shin

CS/TR-2004-196

January 26, 2004

K A I S T
Department of Computer Science

On Pixel-Based Texture Synthesis by
Non-parametric Sampling

Seunghyup Shin Sung Yong Shin

1st iteration 2nd iteration 3rd iteration 4th iteration 6th iteration 8th iteration 10th iteration

Figure 1: Iterative texture refinement

Abstract

In this paper, we propose a pixel-based method for texture synthesis with
non-parametric sampling. On top of the general framework of pixel-based
approaches, our method has three distinguishing features: window size esti-
mation, seed point planting, and iterative refinement. The size of a window is
estimated to capture the structural components of the dominant scale embed-
ded in the texture sample. To guide the pixel sampling process at the initial
iteration, a grid of seed points are sampled from the example texture. Finally,
an iterative refinement scheme is adopted to diffuse the non-stationality ar-
tifact over the entire texture. Our objective is to enhance texture quality as
much as possible with a minor sacrifice in efficiency in order to support our
conjecture that the pixel-based approach would yield the best quality.

1 Introduction

Texture synthesis by example has recently been investigated extensively in com-
puter vision and computer graphics. This problem is stated as follows: Given a
texture sample, synthesize a (tilable) new texture of an arbitrary size such that it is
perceptually similar to the texture sample. The notion of perceptual similarity is
well explained in [7, 18]. Rich results have been reported as solutions to the texture

1

synthesis problem [8, 14, 18, 2, 6, 11]. In particular, pixel-based, non-parametric
methods [7, 18, 2] have drawn much attention.

Relying on a simple strategy of copying one pixel at a time, these techniques
have demonstrated their surprising capability of synthesizing a wide variety of
high quality textures ranging from regular to stochastic. However, resulting tex-
tures have sometime shown visual artifacts such as “blurring” and “garbage grow-
ing” [7, 2, 18]. That is, a pixel-based method has a tendency to blur features or to
grow small-scale structures in synthesized textures. As pointed out in [12], such a
method also suffers from heavy searching time in sampling the pixel values from
the input sample texture.

To remedy those drawbacks in both texture quality and time efficiency, patch-
based methods have been proposed [6, 12, 11]. Unlike pixel-based methods, patch-
based methods copy a patch of pixels at a time to show real-time performances in
texture synthesis. Moreover, by copying a cluster of spatially coherent pixels si-
multaneously, the latter methods apparently remove visual artifacts such as blurring
and garbage growing. However, a closer look at the resulting textures sometimes
reveals at least two new types of artifacts, instead: texture discontinuity and repeti-
tion. The discontinuity artifact is caused when a texture sample exhibits a smooth
spatial variation with no high frequency components. The other artifact is observed
when a verbatim copy of a patch in the texture sample is transferred to a synthe-
sized texture. Both of these artifacts may result from the lack of randomness of the
patch-based copying strategy.

To introduce enough randomness into a texture while adopting the patch-based
strategy, either patches must be sufficiently small and irregular, or patch-copying
operations must be repeated sufficiently often to eventually remove all seams and
patch repetitions. Then, the limiting behavior would be reduced to that of a pixel-
based scheme. This conjecture naturally raises an interesting question: Are prob-
lems such as blurring and garbage growing indeed inherent in pixel-based schemes?
As expected, our answer is negative as we will explain in later sections.

In this paper, we propose a novel pixel-based method which exhibits neither
blurring nor garbage growing while not introducing any new artifacts. Our objec-
tive is to enhance texture quality with a little sacrifice in time complexity. On the
top of the general framework of the pixel-based paradigm, our method is equipped
with three distinguishing features: window size estimation, seed point planting,
and iterative refinement. The window size is estimated to capture the structural
texture components of the dominant scale. After initially sampling a grid of seed
points, the method iteratively refines the output texture synthesized at the previous
step (See Figure 1) until the termination criteria are satisfied.

As an application of our method, we pose an interesting problem called texture

2

(a) Texture samples (b) An output texture

Figure 2:Texture fusion

fusion: Given two or more sample textures, synthesize a new seamless texture
of an arbitrary size with its designated parts similar to the input sample textures,
guided by a user-specified map. After obtaining the new texture samples for texture
fusion, our method can solve this problem to yield interesting textures as illustrated
in Figure 2.

The remainder of this paper is organized as follows: After reviewing related
work in Section 2, we present a novel texture synthesis method in Section 3. In
Section 4, we apply our method to fuse multiple sample textures. We show ex-
perimental results in Section 5. Finally, Sections 6 and 7 provide discussion and
conclusions, respectively.

2 Related Work

Rich results have been reported in texture analysis and synthesis. For our purposes,
we focus on research results on example-based texture synthesis by non-parametric
sampling, which are directly related to our work. Methods in this category model
an (infinite) texture by Markov Random Fields (MRF). A texture is synthesized
by simply copying pixels from a texture sample based on their local similarity.
An underlying assumption is that the finite texture sample reflects the statistical
properties of an MRF such as stationality and locality. Depending on the method
of copying (sample) pixels from the texture sample, we distinguish two classes of
methods.

Pixel-based methods: This class of methods adopts the strategy of copying one
pixel at a time. Efros and Leung [7] initiated this strategy and demonstrated its

3

power of probability sampling by synthesizing high quality textures. They also
reported their experience that the method sometimes causes visual artifacts such
as garbage growing and verbatim copying. We believe that these artifacts result
for two reasons: For the former artifact, the method lacks an additional guide for
sampling a pixel even though only partial neighbors of the pixel are available. For
the latter artifact, the window size probably might be too large to introduce enough
randomness. In addition, the method required heavy computation time because of
exhaustive pixel searching.

Wei and Levoy [18] tried to improve the previous method [7] in at least two di-
rections: To guide the pixel sampling process beyond the already-generated neigh-
bors of each pixel, they proposed a multi-resolution scheme. This scheme also
exhibited the effect of enlarging the window size. In fact, exploiting the full
neighbors at coarser levels, their method sampled some types of structural com-
ponents relatively well, even with a small window size. To accelerate the pixel
searching process, they adopted a heuristic called tree-structured vector quantiza-
tion (TSVQ). Although the TSVQ greatly enhanced time efficiency, it also brought
in the blurring artifact, which may obscure the quality enhancement obtained from
the multi-resolution searching.

Ashikhmin [2] exploited spatial coherency to remedy the blurring artifact ob-
served in a texture generated by the method of Wei and Levoy. The latter method
tries to sample a better pixel from scratch at every pixel to be synthesized. The
search domain covers the entire texture sample although it is reduced quickly due
to the TSVQ technique. Ashikhmin restricted the search domain based on the
observation that the pixel to be synthesized is spatially coherent with its already-
generated neighbors. Therefore, given their positions in the texture sample, the
candidates can be found by properly shifting these positions according to their dis-
placements with respect to this pixel. Thus, Ashikhmin’s method tends to show a
patch-copying behavior and solves the blurring artifact as intended. This method
also exhibited better time efficiency than that of Wei and Levoy even without em-
ploying the TSVQ acceleration. However, the method sometime introduced vi-
sual artifacts such as discontinuity and garbage growing due to its restricted search
space.

Patch-based Methods: Unlike pixel-based methods, patch-based methods copy
a patch of pixels at a time. These methods exploited spatial coherency in one form
or another to accelerate their synthesis performances as well as to enhance texture
quality. In this sense, Ashikhmin’s work [2] can be considered as a “bridge” to the
patch copying paradigm although Xu et al. [20] used texture patches even earlier

4

for texture synthesis.
Efros and Freeman [6] presented a patch-based method called “image quilting.”

They observed that, in pixel-based texture synthesis, much effort is waisted on
searching pixels, the positions of which can be derived trivially from their already-
synthesized neighbors based on spatial coherency. Therefore, the granulity of syn-
thesis was enlarged to be an aggregation of connected pixels contained in a patch
of the texture sample. Their method first tiles the output texture with a set of
overlapping square blocks (obtained from the texture sample) such that each block
matches its neighbors along the overlapping regions. Then, each pair of adjacent
blocks are stitched along the minimum cost path passing through their overlapping
region.

Liang et al. [12] proposed a similar method. Their method used feathering
instead of quilting to combine a pair of blocks. Based on an optimized kd-tree [1,
13] and principal component analysis (PCA) [9], the most notable feature of this
method is its real-time performance while not introducing the blurring artifact. We
will adopt their idea for pixel sampling.

In addition to performance acceleration, both methods [6, 12] were intended
to enhance texture quality, in particular, removing the garbage growing observed
in pixel-based methods [7, 18, 2]. However, these methods sometimes produced
visual artifacts such as texture discontinuity and verbatim copying. In addition,
neither of the methods was able to set the block size automatically. Cohen et al. [4]
presented a stochastic method to tile the plane non-periodically with a small set
of edge-constrained tiles called Wang tiles. Our seed point planting scheme is
inspired by this work.

Recently, Kwatra et al. [11] proposed a new patch-based method to fix the
problems of previous methods [6, 12]. Their patch-copying process is performed
in two stages: First, the sample texture is placed at a proper location in the out-
put texture synthesized at the previous step, which can be accelerated using a fast
Fourier transform technique. Then, the optimal seam is searched within the region
of overlap to minimize visual discontinuity using a graph-cut technique.

Unlike others, this method iteratively refines the texture quality without requir-
ing a-priori knowledge on the patch size and demonstrated rather superb perfor-
mance in both quality and efficiency. However, a small number of iterations may
result in similar artifacts as observed with the previous patch-based methods. In-
tuitively, the limiting behavior of this method would be similar to a pixel-based
paradigm due to a certain degree of randomness picked up at every step. Thus,
excessive iterations would not only destroy the texture structure but also require
heavy computation time. Unfortunately, it is hard, if not impossible, to find the
proper termination criteria for automatic texture synthesis.

5

(a) L-shape window (b) Square window

Figure 3:Window shapes

3 Texture Synthesis

Overview: Our example-based texture synthesis method includes two major stages:
texture modeling and texture sampling. The former is concerned with how to es-
timate the MRF underlying an ideal texture using a finite texture sample, and the
latter deals with how to efficiently sample the pixels from the estimated MRF to
synthesize an output texture. We first provide the skeleton of our method and then
describe important steps:

function TextureSynthesis (TextureSample)
{

1 WindowSize← 2 * ComputeDominantScale(TextureSample);
2 SearchTree← BuildSearchTree(TextureSample);
3 OutputTexture← PlantSeed(WindowSize);
4 ContinueFlag← True;
5 while (ContinueFlag)

{
6 CurrentOutput← RefineTexture(OutputTexture);
7 if (CurrentOutput satisfies the termination criteria)
8 ContinueFlag← False;
9 OutputTexture← CurrentOutput;

}
10 return OutputTexture;

}

The modeling stage consists of window size estimation (step 1), search tree
construction (step 2), and seed point planting (step 3) which determines the (full)
neighbors of a pixel, accelerates pixel sampling, and initializes the output texture,
respectively. The sampling stage is the main loop that iteratively refines texture
quality (steps 4-9). At each iteration, the texture is refined in the scan-line order,
that is, top-to-bottom and left-to-right order.

6

r
O

v

u

d/2

d/2

(a) Integration along a
ring region

0 10 20 30 40 50 60 700

0.5

1

1.5

2

2.5

3 x 10 8

P(r)

r

(b) A histogramP (r) of a 64×64 texture
sample. In this example, the dominant fre-
quency is6 and the dominant texture scale
is 11(≈ 64/6)

Figure 4:Texture scale estimation

Window Size Estimation: Our method adopts the pixel-based paradigm with
non-parametric probability sampling. In this paradigm, the conditional probability
of a pixel is solely dependent on its neighbors, which are contained in the window
centered on the pixel. Therefore, the size of the window needs to be estimated to
determine the neighbors (Figure 3). L-shaped windows have been used to reflect
the availability of the neighbors when textures are synthesized in the scan-line
order [18, 2]. To refine a texture iteratively, we use a square window although we
also adopt the scan-line order.

In addition to probability sampling, the window also plays a key role in captur-
ing the structure of a texture. Therefore, it should be at least as large as the scale of
the most dominant structural component in the texture. Otherwise, the neighbors
would not properly reflect the structural information. We set the window size to
be twice as large as the dominant scale. The dominant scale also determines the
density of the seed points, which initially guide the iterative texture refinement.
Empirically, we set the density of the seed points to be the same as this scale (See
details in Section 6). Now, the problem is estimating the dominant scale.

We adopt the statistical texture analysis based on a Fourier power spectrum [19,
16]. For anN × N texture samplef(x, y), let F (u, v) be its discrete Fourier
transform:

F (u, v) =
N−1∑

x=0

N−1∑

y=0

f(x, y)e−2π
√−1(ux/N+vy/N).

The Fourier power spectrumP (u, v) represents the strength of each spatial fre-

7

quency and is defined by
P (u, v) = |F (u, v)|2.

By representing the power spectrumP (u, v) as its equivalentP (r, θ) in the polar
coordinates and integrating them within a ring region (Figure 4(a)), we obtainP (r)
which is a sum of the strengths around the frequencyr:

P (r) =
r+d/2∑

rx=r−d/2

π∑

θ=0

P (rx, θ).

Here,d is the thickness of the ring region and was set to be 0.1 in our experiments.
We compute thedominant frequencyof the texture sample by selectinĝr whose
correspondingP (r̂) is the largest (Figure 4(b)). Finally, thedominant texture scale
s is obtained by dividing the texture sizeN with the dominant frequency. That is,
s = N/r̂, wherer̂ = arg maxr P (r).

For non-structural textures,P (r) may not have a prominent peak as shown in
Figure 4(b), and thus one might claim that the estimated scale is not so meaningful.
However, the role of the scale is not only to capture the structure of the texture
sample but also to obtain an initial guess for the iterative texture refinement. For a
non-structural texture, the dominant scale can still be used as the sampling density
to construct the initial guess.

Search Tree Construction: Given the output pixel to be refined and its full
neighbors, we need to search the pixel from the texture sample, whose neigh-
bors are most similar to those of the output pixel. Considering the neighbors of
a pixel as ak-dimensional vector wherek is three times as large as the number of
the neighbors of the pixel, we can formulate the pixel search as ak-dimensional
nearest search problem as suggested in [18].

Inspired by the work in [12], we also use a kd-tree and PCA to accelerate the
search while avoiding texture blurring. We do not adopt the multi-resolution tex-
ture synthesis scheme by Wei and Levoy [18] since we take an iterative refinement
paradigm unlike their scheme. In addition, our seed point planting scheme is pow-
erful enough to guide the initial iteration of the refinement process.

The kd-tree greatly accelerates the pixel search while guaranteeing the exact
solution. PCA further accelerates the search by reducing the dimensionality of the
search space with a negligible sacrifice in quality. We refer readers to the work in
[12] for details.

8

(a) Unit tiles (b) Initial tile (c) Topmost row

(d) Leftmost column (e) Remaining tiles

Figure 5:Planting seed points

Seed Point Planting: Different texture synthesis methods may take different or-
ders in pixel sampling. Regardless of pixel sampling orders to be used, however,
about one half of the full neighbors of the current output pixel have not yet become
available. With little information on unavailable neighbors, the structure of a tex-
ture may not be captured properly. Unlike the previous methods, we initially plant
a grid of seed points covering the output texture region, which are sampled from
the texture sample. To hopefully capture the structure of the texture sample, we
set the sampling density of seed points as equal to the estimated dominant texture
scale.

Inspired by the idea of stochastic tiling [4], our scheme plants the seed points
on a square grid covering the output texture region in the scan-line order. Let a
unit tile be a square with an edge length equal to the texture scale such that its four
corner points lie on grid points. Also, we denote its upper, right, left, and lower
sides by N, E, W, and S, respectively. We divide the texture sample into a set of
unit tiles as illustrated in Figure 5(a).

To the top row, the slot at the top-left corner of the output texture is initially
tiled by a randomly-selected unit tile (Figure 5(b)). Each remaining slot in the first
row is tiled one by one by selecting a unit tile at a time such that the W edge of the
new tile matches the E edge of its left one (Figure 5(c)). A pair of edges are said to
match when the colors of their corresponding corner points are similar. To avoid
the verbatim copying problem, we randomly select a unit tile among thek best
matching ones (We empirically setk=5). When placing a unit tile on the output
texture, we sample the values of two seed points on the E edge since those on the
W edge have already been obtained.

9

From the second row, we slightly modify our sampling policy since more in-
formation on new output tiles are available. For the leftmost tile on the output
region, we select a unit tile whose N edge matches the S edge of its upper tile
(Figure 5(d)). We sample the values of the seed points on the S edge from the cor-
responding points of a unit tile randomly chosen among thek best matching tiles.
For each of the remaining output tiles, we find thek best matching unit tiles such
that the W and N edges of every tile match the E edge of its left tile and the S edge
of its upper tile, respectively, to randomly choose a tile from which the value of the
bottom-right point is sampled (Figure 5(e)).

Iterative Refinement: As described clearly in [7, 18], the notion of perceptual
similarity includes both stationality and locality. Exploiting the locality property
for sampling efficiency, the previous methods [7, 18, 2] have exhibited this property
rather well in synthesized textures. However, the stationality property has not been
addressed.

The main sources of the non-stationality are the unavailability of the full neigh-
bors of a pixel and the inhomogeneity of the neighborhood near the boundary, to-
gether with the improper setting of the window size. This effect has appeared in
synthesized textures in various forms of visual artifacts such as garbage growing,
discontinuity, and blurring.

Assuming that the window size is set properly, the texture synthesis process
can be enhanced to hopefully remove these artifacts. The key idea of this enhance-
ment is to use the output texture at the previous iteration as the input texture at the
current iteration. A similar idea was attempted in a different way (coherent search),
with a different motivation (user control) by Ashikhmin [2]. The rationale for our
move is that the full neighbors are available at every pixel in an output texture
with possible wrapping around near the boundary. Therefore, our texture synthesis
method refines the output texture iteratively to diffuse the non-stationality artifact
over the entire texture with the support of the full neighbors of every pixel. In
this sense, the output textures with the previous methods can be interpreted as the
intermediate results after the first iteration.

Taking a grid of seed points as an initial guess, the output texture is iteratively
refined until the termination criteria are satisfied. In the first iteration, only the
seed points together with the newly-synthesized pixels in the window of each out-
put pixel are used for the pixel search, and the rest of them are masked out in
neighborhood comparison. From the second iteration, the full neighbors take part
in the search.

We have tried two different criteria: the number of iterations and the texture

10

Texture sample A Texture sample B Mixed texture

(a) Texture samples and a mixed texture with their cor-
responding colors

(b) A fusion map (c) An output texture

Figure 6:Texture fusion

difference from the previous iteration. For the former, the maximum number of
iterations is preset. Empirically, visually-good textures have been produced within
ten iterations. For the latter, we define the texture differenced between a pair of
consecutively-synthesized textures,fi−1 andfi as follows:

d(fi−1, fi) =
N−1∑

x=0

N−1∑

y=0

‖fi(x, y)− fi−1(x, y)‖
‖fi−1(x, y)‖ , (1)

where‖ · ‖ is a Euclidean norm. Ifd(fi, fi−1) is smaller than a user-specified
thresholdε, then we stop the iterative refinement. Empirically, our method has
worked well withε = 0.01. In either case, our texture refinement needs multiple
iterations, which can be accelerated greatly with the help of the kd-tree and PCA.

4 Texture Fusion

The origin of our texture fusion problem is probably traced back to the constrained
texture synthesis problem [7, 18]. Ashikhmin [2] addressed a more general prob-
lem of synthesizing a texture guided by a user-provided map. Recently, Kwatra
et al. [11] showed how to merge multiple textures interactively by extending their

11

texture synthesis method based on a graph cut technique. The texture fusion prob-
lem is to merge multiple textures seamlessly with the guidance of a user-provided
fusion map. We address this problem by combining our texture synthesis method
and the graph cut technique. The Figure 6 illustrates how our texture fusion method
works.

We assume that the fusion map is composed of a set of colored regions. The
fusion map is an image which may be hand-drawn, photographed, or computer-
generated. There is a one-to-one correspondence between the colors and the texture
samples, which are specified by the user. To merge adjacent regions seamlessly,
a narrow belt region is laid down along each boundary as shown in Figure 6(b)
(green region). The width of a belt is set equal to one half of the width of the larger
window between those of the adjacent regions. The size of the window of a belt
region is made equal to that of the larger window while the initial grid density is
set equal to the dominant scale of the smaller one.

For every pair of regions sharing a common belt, we create a new texture sam-
ple by merging their corresponding textures with the graph cut technique. The new
texture is used as the texture sample for the belt. In this sense, the texture can be
considered as training data for our texture fusion model. With all textures being
ready, we first apply our texture synthesis method to each non-belt region with its
texture sample and then fill in every belt with its own newly-synthesized texture
sample. When filling in a belt, the window of each pixel in the belt is guaranteed to
intersect both of the adjacent non-belt regions so that they can make contributions
in forming the pixel neighborhood. All regions including the belts are filled in the
scan-line order with no iterative refinement.

5 Experimental Results

We performed our experiments on an Intel Pentium IV 3.2GHz processor with 4GB
of main memory. The texture samples have a resolution of128×128 or 192×192,
and the output textures have a resolution of200 × 200. We use Matlab codes for
PCA and the ANN library of Mount [13] for kd-tree generation and searching.

We first show the error diffusion behaviors of our iterative refinement scheme
with both the mean square errors (MSE) and the number of pixels for the stone tex-
ture (Figure 7(a)). As shown in Figures 7(b) and (c), both the MSE and the number
of pixels changed decrease rapidly until around 20 iterations and then oscillate
within a small range. Empirically, we find that visually-good quality is achieved
within 10 iterations for most textures. However, the quality of synthesized textures
looks quite good even with a single iteration in many cases.

12

(a) Stone

0 10 20 30 40 50 60 70 80 90 10021000

22000

23000

24000

25000

26000

27000

Number of iterations

Nu
m

be
r o

f c
ha

ng
ed

 p
ix

els

(b) Number of changed pixels

0 10 20 30 40 50 60 70 80 90 1000

0.5

1

1.5

2

2.5

3 x 10
4

Number of interations

M
SE

(c) Mean square errors

Figure 7:Convergency of iterative refinement for the rope texture

(a) Brick (b) 1st iteration (c) 2nd iteration (d) 3rd iteration (e) 4th iteration (f) 5th iteration

(g) Marigold (h) 1st iteration (i) 3rd iteration (j) 5th iteration (k) 7th iteration (l) 10th iteration

Figure 8:Examples of iterative texture refinement

13

Figure 9: Texture synthesis results. For each pair of images, the left is a texture sample and the
right is a result.

Results on various textures are shown in Figures 8-10. In Figure 8, we can ob-
serve the evolution of an output texture at each iteration due to iterative refinement.
The results in Figure 9 are obtained by applying our method to some free textures
available on the Internet. We compare our results with those of Wei and Levoy [18]
and Ashikhmin [2] collected from their papers and websites (Figure 10). Timing
data for the textures in Figures 8-10 are summarized in Table 1, where statistics for
PCA, kd-tree generation, and texture synthesis are given separately in seconds.

The results of texture fusion are provided in the next two figures. In Figure 11,
we present our results on texture fusion for two different kinds of beans. The fusion
map in Figure 11(c) is automatically generated as follows: A circle is placed at a
randomly-chosen pixel with a color, either red (for purple beans) or blue (for yellow
beans), based on the following probability density functions:

Pr(x) = e−x2/2σ2
andPb(x) = 1− Pr(x),

wherex is the distance from the top row of the map, andPr andPb denote the
probability density functions of red and blue circles, respectively. We setσ to 80,
the radius of the red circles to 15, and that of blue ones to 11, where the value ofσ
is obtained empirically and the radii of circles are taken from the dominant scales
of their corresponding textures, respectively. We repeatedly place the circles until
all pixels in the fusion map are covered. When a newly-placed circle intersects

14

(a) Rope (b) Wei and Levoy’s (c) Ashikhmin’s (d) Ours

(e) Bark (f) Wei and Levoy’s (g) Ashikhmin’s (h) Ours

(i) Cloud (j) Wei and Levoy’s (k) Ashikhmin’s (l) Ours

(m) Wood (n) Wei and Levoy’s (o) Ashikhmin’s (p) Ours

Figure 10:Comparison with previous methods

15

(a) Purple
beans

(b) Yellow
beans

(c) A
merged tex-
ture (a)+(b)

(d) A fusion map (e) An output texture

(f) Clover (g) Grape (h) Plum (i) A merged
texture
(f)+(g)

(j) A merged
texture
(g)+(h)

(k) A fusion map (l) An output texture

Figure 11:Texture fusion results. Each color box specifies a corresponding region for each texture.

16

size scale
Preprocessing time Synthesis time

PCA
kd-tree
generation

total average

brick 128× 128 21 513.4 1.7 287.6 28.76
marigold128× 128 18 359.9 1.3 243.6 24.36
granite 128× 128 18 363.0 1.3 265.2 26.52
grass 128× 128 19 387.7 1.4 230.9 23.09
frog 128× 128 21 511.2 1.6 189.5 18.95
raspberry128× 128 20 480.8 1.5 212.2 21.22
paper 128× 128 17 348.7 1.3 217.5 21.75
water 128× 128 19 392.8 1.4 259.8 25.98
roof 128× 128 21 505.7 1.6 209.2 20.92
stone 128× 128 15 287.3 1.2 221.6 22.16
rope 192× 192 18 392.2 3.8 258.8 25.88
bark 192× 192 14 260.9 2.8 303.9 30.39
cloud 192× 192 13 235.2 2.5 239.0 23.9
wood 128× 128 23 728.1 1.9 263.2 26.32

Table 1: Timing data for our texture synthesis method

an already-colored region with a different color, the part of the region intersecting
the circle is colored green so as to be filled later with the mixed texture. The
next example demonstrates a three-way texture fusion provided with a user-drawn
fusion map.

As shown in Figure 12, our method can also be used for constrained texture
synthesis [18]. Since the pixels on the boundary of the hole are fixed, we fill
the hole in a cyclic order (See Figure 12(b)) while moving from the fixed sides
toward their corresponding opposite sides, so that every pixel is scanned four times.
The visual quality of the resulting texture is slightly better than that of Wei and
Levoy [18] which used a spiral order (Figure 12(c)(d)).

The last experiment combines our method with a patch-based method. As ex-
plained in Section 2, a patch-based method consists of two stages: patch place-
ment and boundary stitch. We employ our constrained texture synthesis scheme for
boundary stitch (See Figure 13). Initially, a texture sample is placed at a randomly-
chosen position in the output texture. At each step, the texture is translated to a
position where it matches an already-synthesized region (Figure 13(b)). To ensure
that the output texture is fully covered, we avoid the previously-chosen positions
when placing the texture. The partially-overlapped region is filled by employing
our scheme for texture fusion. To make the patch placement efficient, we adopt an
FFT-based acceleration technique [11]. Figures 13(c) and (d) show our result and

17

that of Kwatra et al. [11] for a strawberry texture, respectively.

6 Discussion

Sampling Density and Window Size: The sampling density plays a key role
in collecting the structural information distributed in a texture sample. A rule of
thumb to decide it would be to follow the Nyquist limit, that is, less than one half
of the dominant scale. However, a dense sampling rate restricts the freedom of
pixel sampling, which may cause a verbatim copying artifact. Moreover, due to
the randomness in constructing the seed points, the sampling dense rate may also
introduce conflicting information to confuse the pixel sampling process, causing a
slow convergency in texture refinement. Our compromise was to make the sam-
pling density the same as the dominant scale based on our empirical observations.
We instead made the window size twice as large as the dominant scale to hopefully
capture the global arrangement of dominant structural components. The efficiency
degration due to the larger window size was addressed by employing PCA.

Texture Domain: We have modelled textures as MRFs (Markov Random Fields)
adopting the line of other similar approaches. MRFs have been proven to cover
a wide variety of useful textures, which are somewhat in-between regular and
stochastic. As characterized well in [18], those textures exhibit both locality and
stationality. That is, each pixel of a texture is characterized by a small set of spa-
tially neighboring pixels, and this characterization is the same for all pixels. Our
method can be applied to such textures (not images) which can be modelled as
MRFs.

Temporal Texture Synthesis: We have focused on 2D texture synthesis, in par-
ticular, how to enhance the quality of a synthesized 2D texture. However, our
method can also be used for temporal texture synthesis, like those in [18, 11]. In
this case, the iterative refinement should be avoided for time efficiency.

7 Conclusions

Returning to the question posed in Section 1, we conclude that the problems such
as texture blurring and garbage growing are not really inherent in pixel-based
schemes, as shown in our experimental results. We claim that the pixel-based it-
erative refinement strategy yields the best quality with a good initial guess as long

18

(a) A texture sample

1

2

3

4

5

6

7

8

...
...

(b) Cyclic order

(c) Ours (d) Wei and Levoy’s

Figure 12:Constrained texture synthesis

(a) Straw-
berry

(b) Patch placement

(c) Ours (d) Kwatra et al.’s

Figure 13:Combination with patch-based method

19

as the window size is properly chosen. In this sense, patch-based approaches can
be regarded as approximation schemes for acceleration. The most serious disad-
vantage of our method is efficiency degradation as Ashikhmin [2] pointed out. We
believe that our method could be accelerated by incorporating spatial coherency.

References

[1] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and An-
gela Y. Wu. An optimal algorithm for approximate nearest neighbor searching
fixed dimensions.Journal of the ACM, 45(6):891–923, 1998.

[2] Michael Ashikhmin. Synthesizing natural textures. InSymposium on Inter-
active 3D Graphics, pages 217–226, 2001.

[3] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy min-
imization via graph cuts. InICCV (1), pages 377–384, 1999.

[4] Michael F. Cohen, Jonathan Shade, Stefan Hiller, and Oliver Deussen. Wang
tiles for image and texture generation.ACM Trans. Graph., 22(3):287–294,
2003.

[5] Jeremy S. DeBonet. Multiresolution sampling procedure for analysis and
synthesis of texture images.Computer Graphics, 31(Annual Conference
Series):361–368, 1997.

[6] Alexei A. Efros and William T. Freeman. Image quilting for texture synthesis
and transfer. In Eugene Fiume, editor,SIGGRAPH 2001, Computer Graphics
Proceedings, pages 341–346. ACM Press / ACM SIGGRAPH, 2001.

[7] Alexei A. Efros and Thomas K. Leung. Texture synthesis by non-parametric
sampling. InIEEE International Conference on Computer Vision, pages
1033–1038, Corfu, Greece, September 1999.

[8] David J. Heeger and James R. Bergen. Pyramid-based texture analy-
sis/synthesis. InSIGGRAPH, pages 229–238, 1995.

[9] I. T. Jollife. Principal component analysis.Springer-Verlag, New York, 1986.

[10] S.L. Kilthau, M.S. Drew, and T. Moller. Full search content independent
block matching based on the fast fourier transform. InICIP02, pages I: 669–
672, 2002.

20

[11] Vivek Kwatra, Arno Schodl, Irfan Essa, Greg Turk, and Aaron Bobick.
Graphcut textures: Image and video synthesis using graph cuts.ACM Trans-
actions on Graphics, SIGGRAPH 2003, July 2003.

[12] Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and Heung-Yeung Shum.
Real-time texture synthesis by patch-based sampling.ACM Trans. Graph.,
20(3):127–150, 2001.

[13] D. M. Mount. Ann programming manual.Department of Computer Science,
University of Maryland, College Park, Maryland, 1998.

[14] Javier Portilla and Eero P. Simoncelli. A parametric texture model based
on joint statistics of complex wavelet coefficients.International Journal of
Computer Vision, 40(1):49–70, 2000.

[15] Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped textures. In Kurt
Akeley, editor,Siggraph 2000, Computer Graphics Proceedings, pages 465–
470. ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 2000.

[16] Fumiaki Tomita and Saburo Tsuji. Computer analysis of visual textures.
Hingham, MA: Kluwer Academic, 1990.

[17] Li-Yi Wei. Texture synthesis from multiple sources.SIGGRAPH 2003 Sketch
and Applications, July 2003.

[18] Li-Yi Wei and Marc Levoy. Fast texture synthesis using tree-structured vector
quantization. In Kurt Akeley, editor,Siggraph 2000, Computer Graphics Pro-
ceedings, pages 479–488. ACM Press / ACM SIGGRAPH / Addison Wesley
Longman, 2000.

[19] J.S. Weszka, C.R. Dyer, and A. Rosenfeld. A comparative study of texture
measures for terrain classification.IEEE Trans SMC, 6:269–285, 1976.

[20] Ying-Qing Xu, Baining Guo, and Harry Shum. Chaos mosaic: Fast and mem-
ory efficient texture syntheeis.Microsoft Research Technical Report MSR-
TR-2000-32, April 2000.

[21] Jingdan Zhang, Kun Zhou, Luiz Velho, Baining Guo, and Heung-Yeung
Shum. Synthesis of progressively-variant textures on arbitrary surfaces.ACM
Trans. Graph., 22(3):295–302, 2003.

21

